
29 Launcher blok - cooldown
V této lekci si u launcher bloku přidáme cooldown po aktivaci. Zároveň si ukážeme, jak
změnit model bloku nastavením dat v kódu.

Vlastnosti bloků
Cooldown přidáme pomocí vlastnosti bloku. Některé bloky v Minecraftu mají vlastnosti, které
se nastavují podle stavu bloku. Například tlačítka, páčka a podobné bloky mají vlastnost
powered , která označuje, zda blok vydává redstone signál. Dále například pec má vlastnost
lit (zda hoří) a facing (kterým směrem je otočená).

Vlastnosti si můžeme přidávat i vlastní a můžeme do nich ukládat stav našeho bloku. Dále z
vlastnosti můžeme hodnotu i číst a na základě toho se rozhodnout, zda se provede nějaká
část kódu nebo ne.

Dle hodnoty vlastnosti můžeme poté měnit i model bloku.

Přidání vlastnosti bloku

Vlastnost budeme přidávat ve třídě bloku - LauncherBlock .

Nejprve si vytvoříme proměnnou, do které si vlastnost uložíme. Vlastnost bude typu
boolean - pravdivostní hodnota (true - pravda, false - nepravda).

Dále musíme vlastnost registrovat v metodě appendProperties :

Poté upravíme konstruktor třídy a nastavíme této vlastnosti výchozí hodnotu. Základní
hodnota bude false . Když bude aktivní cooldown, tak hodnotu nastavíme na true .

src/main/java/com/example/block/LauncherBlock.java

public static final BooleanProperty COOLDOWN =

BooleanProperty.of("cooldown");

1

src/main/java/com/example/block/LauncherBlock.java

@Override

protected void appendProperties(StateManager.Builder<Block, BlockState>

builder) {

builder.add(COOLDOWN);

super.appendProperties(builder);

}

1

2

3

4

5

Odpočet času na cooldown
Odpočet budeme počítat v jednotce času tick - tak se počítá čas v Minecraftu. 1s = 20
ticků .

Odpočet času uděláme tak, že si vytvoříme proměnnou, ve které si po aktivaci bloku
nastavíme, jak dlouho má být cooldown aktivní např. 20 ticků . Dále každý tick odečteme
ze zbývajícího času 1 a jakmile bude odpočet 0 , tak přepneme blok zpátky do normálního
stavu.

Vytvoříme si 2 proměnné.

Samotný odpočet času uděláme pomocí metody scheduledTick . Tu můžeme spouštět z
kódu tak, že řekneme, aby se naplánoval tick bloku. Následující tick se poté spustí tato
metoda. Pokud tedy budeme tuto metodu volat stále dokola, tak se bude spouštět každý tick
- tedy 20krát za sekundu.

V základu metoda vypadá následovně:

Nejprve si zkontrolujeme, zda je hodnota v časovači (proměnná timer) větší, než 0 .
Pokud ano, tak to znamená, že časovač ještě běží. Snížíme tedy hodnotu časovače o 1

src/main/java/com/example/block/LauncherBlock.java

public LauncherBlock(Settings settings) {

super(settings);

setDefaultState(getDefaultState().with(COOLDOWN, false));

}

1

2

3

4

cooldownTicks - délka cooldownu
timer - odpočet, kolik z cooldownu ještě zbývá

src/main/java/com/example/block/LauncherBlock.java

private final int cooldownTicks = 40;

private int timer = 0;

1

2

src/main/java/com/example/block/LauncherBlock.java

@Override

protected void scheduledTick(BlockState state, ServerWorld world, BlockPos

pos, Random random) {

super.scheduledTick(state, world, pos, random);

}

1

2

3

4

timer--;1

a naplánujeme další spuštění metody scheduledTick . U plánování ticku uvádíme pozice
bloku, objekt bloku (this je aktuální objekt bloku) a zpoždění, se kterým se má tick spustit.

Pokud časovač není větší než 0 , tak to znamená, že doběhnul. Můžeme přidat ještě
kontrolu, zda je blok napájený redstonem, aby hráč nemohl mít jen zapnutou páčku a blok
se neaktivoval pořád dokola.

Pokud tedy blok není napájený redstone signálem, tak nastavíme vlastnost COOLDOWN na
hodnotu false .

Pomocí slova else můžeme zaručit, že pokud není splněná předchozí podmínka timer >
0 , tak se spustí jiný kód. Toto můžeme dále zkombinovat s další kontrolou else if a tato

můžeme zkontrolovat více možných situací.

Pokud je ale redstone signál stále aktivní, tak musíme tuto podmínku kontrolovat stále
dokola. Proto přidáme ještě poslední možnost else a to bude opět naplánování ticku.

world.scheduleBlockTick(pos, this, 0);1

src/main/java/com/example/block/LauncherBlock.java

@Override

protected void scheduledTick(BlockState state, ServerWorld world, BlockPos

pos, Random random) {

if (timer > 0) {

timer--;

world.scheduleBlockTick(pos, this, 0);

}

super.scheduledTick(state, world, pos, random);

}

1

2

3

4

5

6

7

8

9

src/main/java/com/example/block/LauncherBlock.java

@Override

protected void scheduledTick(BlockState state, ServerWorld world, BlockPos

pos, Random random) {

if (timer > 0) {

timer--;

world.scheduleBlockTick(pos, this, 0);

} else if (!world.isReceivingRedstonePower(pos)) {

world.setBlockState(pos, state.with(COOLDOWN, false));

}

super.scheduledTick(state, world, pos, random);

}

1

2

3

4

5

6

7

8

9

10

11

Tímto máme odpočet hotový, ale ještě musíme upravit metodu neighborUpdate z
předchozí lekce, tak aby se blok neaktivoval, když je cooldown aktivní. A když se blok
aktivuje, tak aby se spustil cooldown.

Použití cooldown
Metoda neighborUpdate aktuálně vypadá následovně:

Poté, co zkontrolujeme, zda je blok napájený redstonem, tak zkontrolujeme ještě, zda je
aktivní cooldown. Hodnotu vlastnosti získáme pomocí state.get(COOLDOWN) . Pokud je tedy
cooldown aktivní, tak se blok neaktivuje.

src/main/java/com/example/block/LauncherBlock.java
@Override

protected void scheduledTick(BlockState state, ServerWorld world, BlockPos

pos, Random random) {

if (timer > 0) {

timer--;

world.scheduleBlockTick(pos, this, 0);

} else if (!world.isReceivingRedstonePower(pos)) {

world.setBlockState(pos, state.with(COOLDOWN, false));

} else {

world.scheduleBlockTick(pos, this, 0);

}

super.scheduledTick(state, world, pos, random);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

src/main/java/com/example/block/LauncherBlock.java

@Override

protected void neighborUpdate(BlockState state, World world, BlockPos pos,

Block sourceBlock, BlockPos sourcePos, boolean notify) {

if (!world.isReceivingRedstonePower(pos)) {

return;

}

Box box = new Box(pos.up());

var entityList = world.getEntitiesByClass(Entity.class, box,

Entity::isOnGround);

for (var entity : entityList) {

entity.addVelocity(0, 1, 0);

entity.velocityModified = true;

}

super.neighborUpdate(state, world, pos, sourceBlock, sourcePos,

notify);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

Pokud ale cooldown aktivní není, tak blok se blok aktivuje a vystřelí entity nahoru. Poté ale
musíme spustit cooldown. To uděláme tak, že nastavíme proměnnou timer na délku
cooldownu (proměnná cooldownTicks). Změníme hodnotu vlastnosti cooldown na true a
naplánujeme spuštění metody scheduledTick .

src/main/java/com/example/block/LauncherBlock.java

@Override

protected void neighborUpdate(BlockState state, World world, BlockPos pos,

Block sourceBlock, BlockPos sourcePos, boolean notify) {

if (!world.isReceivingRedstonePower(pos)) {

return;

}

if (state.get(COOLDOWN)) {

return;

}

Box box = new Box(pos.up());

var entityList = world.getEntitiesByClass(Entity.class, box,

Entity::isOnGround);

for (var entity : entityList) {

entity.addVelocity(0, 1, 0);

entity.velocityModified = true;

}

super.neighborUpdate(state, world, pos, sourceBlock, sourcePos,

notify);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

src/main/java/com/example/block/LauncherBlock.java

@Override

protected void neighborUpdate(BlockState state, World world, BlockPos pos,

Block sourceBlock, BlockPos sourcePos, boolean notify) {

if (!world.isReceivingRedstonePower(pos)) {

return;

}

if (state.get(COOLDOWN)) {

return;

}

Box box = new Box(pos.up());

var entityList = world.getEntitiesByClass(Entity.class, box,

Entity::isOnGround);

for (var entity : entityList) {

entity.addVelocity(0, 1, 0);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

Změna modelu podle hodnoty vlastnosti
Na to aby se automaticky změnil model, když se změní hodnota vlastnosti nám stačí změnit
soubor s možnými stavy bloku ve složce src/main/resources/assets/custom-
block/blockstates .

Aktuálně má náš blok jen jedinou variantu a soubor vypadá následovně:

Pokud chceme více variant, tak musíme pro každou variantu určit jaká vlastnost má mít
určitou hodnotu a na základě toho se nastaví model. Například tedy pokud je hodnota
cooldown=false , tak se použije základní model a pokud je hodnota cooldown=true , tak se

použije model launcher_cooldown .

Soubor tedy bude vypadat následovně:

entity.velocityModified = true;

}

timer = cooldownTicks;

world.setBlockState(pos, state.with(COOLDOWN, true));

world.scheduleBlockTick(pos, this, 0);

super.neighborUpdate(state, world, pos, sourceBlock, sourcePos,

notify);

}

15

16

17

18

19

20

21

22

23

src/main/resources/assets/custom-block/blockstates/launcher.json

{

"variants": {

"": {

"model": "custom-block:block/launcher"

}

}

}

1

2

3

4

5

6

7

src/main/resources/assets/custom-block/blockstates/launcher.json

{

"variants": {

"cooldown=false": {

"model": "custom-block:block/launcher"

},

"cooldown=true": {

"model": "custom-block:block/launcher_cooldown"

}

}

1

2

3

4

5

6

7

8

9

Tímto máme celou funkčnost hotovou a blok by nám měl fungovat. Pokud na něm tedy stojí
nějaké entity a aktivujeme redstone, tak by entity měly vyletět nahoru, blok by se měl
přepnout do stavu cooldown a po chvíli se změnit zpátky.

}10

