29 Launcher blok - cooldown

V této lekci si u launcher bloku pfidame cooldown po aktivaci. Zaroven si ukazeme, jak
zménit model bloku nastavenim dat v kddu.

Vlastnosti bloku

Cooldown pfidame pomoci vlastnosti bloku. Nékteré bloky v Minecraftu maji vlastnosti, které
se nastavuji podle stavu bloku. Napfiklad tlaCitka, packa a podobné bloky maji vlastnost
powered , ktera oznacuje, zda blok vydava redstone signal. Dale napfiklad pec ma vlastnost
lit (zda hofi) a facing (kterym smérem je otoCena).

Vlastnosti si mizeme pfidavat i vliastni a mizeme do nich ukladat stav naseho bloku. Dale z
vlastnosti mizeme hodnotu i Cist a na zakladé toho se rozhodnout, zda se provede néjaka
Cast kodu nebo ne.

Dle hodnoty vlastnosti mizeme poté ménit i model bloku.
Pridani vlastnosti bloku

Vlastnost budeme pfidavat ve tfidé bloku - LauncherBlock .

Nejprve si vytvofime proménnou, do které si vlastnost ulozime. Vlastnost bude typu
boolean - pravdivostni hodnota (true - pravda, false - nepravda).

src/main/java/com/example/block/LauncherBlock.java

public static final COOLDOWN =
("cooldown");

Dale musime vlastnost registrovat v metodé appendProperties :

src/main/java/com/example/block/LauncherBlock.java

@Override
protected void ¢ : < , >
builder) {
builder. (COOLDOWN) ;
super. (builder);
¥

Poté upravime konstruktor tfidy a nastavime této vlastnosti vychozi hodnotu. Zakladni
hodnota bude false . KdyZ bude aktivni cooldown, tak hodnotu nastavime na true .

src/main/java/com/example/block/LauncherBlock.java
public (settings) {

super(settings);
¢ () .with(COOLDOWN, false));

Odpocet ¢asu na cooldown

Odpocet budeme pocitat v jednotce Casu tick - tak se pocita ¢as v Minecraftu. 1s = 20

tickl .

Odpocet ¢asu udélame tak, Ze si vytvofime proménnou, ve které si po aktivaci bloku
nastavime, jak dlouho ma byt cooldown aktivni napf. 20 tickd . Dale kazdy tick odeCteme
ze zbyvajiciho €asu 1 a jakmile bude odpocet 0 , tak pfepneme blok zpatky do normalniho
stavu.

Vytvofime si 2 proménné.
cooldownTicks - délka cooldownu
timer - odpocet, kolik z cooldownu jesté zbyva
src/main/java/com/example/block/LauncherBlock.java

private final int cooldownTicks = 40;
private int timer = 0;

Samotny odpocet ¢asu udélame pomoci metody scheduledTick . Tu mizeme spoustét z
kodu tak, ze Fekneme, aby se naplanoval tick bloku. Nasledujici tick se poté spusti tato
metoda. Pokud tedy budeme tuto metodu volat stale dokola, tak se bude spoustét kazdy tick
- tedy 20krat za sekundu.

V zakladu metoda vypada nasledovné:

src/main/java/com/example/block/LauncherBlock.java

@Override
protected void (state, world,
pos, random) {
super. (state, world, pos, random);
}

Nejprve si zkontrolujeme, zda je hodnota v ¢asovaci (proménna timer) vétsi, nez 0.
Pokud ano, tak to znamena, Ze Casovac jesté bézi. Snizime tedy hodnotu Casovace o 1

timer--;

a naplanujeme dalSi spusténi metody scheduledTick . U planovani ticku uvadime pozice
bloku, objekt bloku (this je aktualni objekt bloku) a zpozdéni, se kterym se ma tick spustit.

world. (pos, this, 0);

src/main/java/com/example/block/LauncherBlock.java

@Override
protected void (state, world,
pos, random) {
if (timer > 0) {
timer——;
world. (pos, this, 0);
}
super. (state, world, pos, random);
}

Pokud ¢asovac neni vétSi nez 0 , tak to znamena, ze dobéhnul. Mizeme pfidat jesté
kontrolu, zda je blok napajeny redstonem, aby hra¢ nemohl mit jen zapnutou packu a blok
se neaktivoval pofad dokola.

Pokud tedy blok neni napajeny redstone signalem, tak nastavime vlastnost COOLDOWN na
hodnotu false .

Pomoci slova else muzeme zarucit, Ze pokud neni spinéna pfedchozi podminka timer >
0 , tak se spusti jiny kéd. Toto mizeme dale zkombinovat s dalSi kontrolou else if atato
muzeme zkontrolovat vice moznych situaci.

src/main/java/com/example/block/LauncherBlock.java

@Override
protected void (state, world,
pos, random) {
if (timer > 0) {
timer——;
world. (pos, this, 0);
} else if (!world. (pos)) {
world. (pos, state.with(COOLDOWN, false));
}
super. (state, world, pos, random);
}

Pokud je ale redstone signal stale aktivni, tak musime tuto podminku kontrolovat stale
dokola. Proto pfidame jesté posledni moznost else a to bude opét naplanovani ticku.

err/main/java/com/example/block/LauncherBlock.java

@Override
protected void (state, world,
pos, random) {
if (timer > 0) {
timer--;
world. (pos, this, 0);
} else if (!world. (pos)) {
world. (pos, state.with(COOLDOWN, false));
} else {
world. (pos, this, 0);
¥
super. (state, world, pos, random);
¥

Timto mame odpocet hotovy, ale jeSté musime upravit metodu neighborUpdate z
predchozi lekce, tak aby se blok neaktivoval, kdyz je cooldown aktivni. A kdyz se blok
aktivuje, tak aby se spustil cooldown.

Pouziti cooldown

Metoda neighborUpdate aktualné vypada nasledovné:

src/main/java/com/example/block/LauncherBlock.java

@Override
protected void (state, world, pos,
sourceBlock, sourcePos, boolean notify) {
if (!'world. (pos)) {
return;
}
box = new (pos.upQ));
var entitylList = world. (.class, box,
o);
for (var entity : entitylList) {
entity. (0, 1, 0);
entity.velocityModified = true;
}
super. (state, world, pos, sourceBlock, sourcePos,
notify);

}

Poté, co zkontrolujeme, zda je blok napajeny redstonem, tak zkontrolujeme jesté, zda je
aktivni cooldown. Hodnotu vlastnosti ziskame pomoci state.get(COOLDOWN) . Pokud je tedy
cooldown aktivni, tak se blok neaktivuje.

src/main/java/com/example/block/LauncherBlock.java

@Override
protected void (state, world, pos,
sourceBlock, sourcePos, boolean notify) {
if (lworld. (pos)) 1
return;
}
if (state. (CooLDOWN)) {
return;
}
box = new (pos.up(Q));
var entitylList = world. (.class, box,
g
for (var entity : entitylList) {
entity. (o, 1, 0);
entity.velocityModified = true;
}
super. (state, world, pos, sourceBlock, sourcePos,
notify);

}

Pokud ale cooldown aktivni neni, tak blok se blok aktivuje a vystfeli entity nahoru. Poté ale
musime spustit cooldown. To udélame tak, Ze nastavime proménnou timer na délku

cooldownu (proménna cooldownTicks). Zménime hodnotu viastnosti cooldown na true a

naplanujeme spusténi metody scheduledTick .

src/main/java/com/example/block/LauncherBlock.java

@Override
protected void (state, world, pos,
sourceBlock, sourcePos, boolean notify) {
if (!'world. (pos)) {
return,
}
if (state.get(COOLDOWN)) {
return;
3
box = new (pos.upQ));
var entitylList = world. (.class, box,

);
for (var entity :
entity.

entitylList) {
0, 1, 0;

entity.velocityModified = true;

}

timer = cooldownTicks;

world. (pos, state.with(COOLDOWN, true));

world. (pos, this, 0);

super. (state, world, pos, sourceBlock, sourcePos,
notify);

}

Zmeéna modelu podle hodnoty viastnosti

Na to aby se automaticky zménil model, kdyz se zméni hodnota vlastnosti nam staci zménit
soubor s moznymi stavy bloku ve slozce src/main/resources/assets/custom-
block/blockstates .

Aktualné ma nas blok jen jedinou variantu a soubor vypada nasledovné:

src/main/resources/assets/custom-block/blockstates/launcher.json

i
"variants": {
||||: {
"model": "custom-block:block/launcher"
}
}
}

Pokud chceme vice variant, tak musime pro kazdou variantu urc€it jaka vlastnost ma mit
urcitou hodnotu a na zakladé toho se nastavi model. Napfiklad tedy pokud je hodnota
cooldown=false , tak se pouzije zakladni model a pokud je hodnota cooldown=true , tak se
pouzije model launcher_cooldown .

Soubor tedy bude vypadat nasledovné:

src/main/resources/assets/custom-block/blockstates/launcher.json

{
"variants": {
"cooldown=Ffalse": {

"model": "custom-block:block/launcher"
b,
"cooldown=true": {

"model": "custom-block:block/launcher_cooldown"
}

Timto mame celou funkénost hotovou a blok by nam mél fungovat. Pokud na ném tedy stoji
néjaké entity a aktivujeme redstone, tak by entity mély vyletét nahoru, blok by se mél
prepnout do stavu cooldown a po chvili se zménit zpatky.

