
28 Launcher blok - přidání bloku, základní
funkčnost
V této lekci budeme pokračovat v tvorbě launcher bloku, který vystřelí entity při aktivaci
redstone signálem. Přidáme si blok do hry a zprovozníme základní funkčnost.

Blok budeme přidávat do módu custom-block , který jsme si tvořili v průběhu roku.

Přidání bloku do hry
Z předchozí lekce bychom měli mít vytvořené 2 bloky a uložené ve formátu .zip . Pro oba
bloky bude postup stejný.

Model a textura

.json soubory (modely) přesuneme do složky src/main/resources/assets/custom-
block/models/block

.png soubory (textury) přesuneme do složky src/main/resources/assets/custom-
block/textures/block

Stav bloku
Ve složce src/main/resources/assets/custom-block/blockstates si vytvoříme soubor
launcher.json , kde definujeme varianty bloku. Zatím bude mít blok jen jednu variantu. Až

přidáme i cooldown pro aktivaci, tak si soubor upravíme.

Item bloku

src/main/resources/assets/custom-block/blockstates/launcher.json

{

"variants": {

"": {

"model": "custom-block:block/launcher"

}

}

}

1

2

3

4

5

6

7

Stav bloku

Více informací najdete v lekci 14 Přidání bloku do inventáře, textura bloku - Stav bloku

Ve složce src/main/resources/assets/custom-block/models/item si vytvoříme soubor
launcher.json , kde určíme, jaký model se má použít na zobrazení v inventáři.

Registrace bloku v kódu

Protože budeme bloku měnit jeho chování, tak si nejprve vytvoříme novou třídu bloku. Tu
vytvoříme ve složce src/main/java/com/example/block a pojmenujeme ji
LauncherBlock . Pokud máte nainstalované rozšíření pro tvorbu módů, tak můžete při

tvorbě souboru zvolit možnost Minecraft Class a poté vybrat Block.

Výsledný soubor by měl vypadat následovně:

Dále musíme blok registrovat ve třídě ModBlocks .

Nejprve přidáme klíč (id), pod kterým se registruje blok i item.

Poté registrujeme samotný blok.

src/main/resources/assets/custom-block/models/item/launcher.json

{

"parent": "custom-block:block/launcher"

}

1

2

3

Model itemu

Více informací najdete v lekci 15 Model itemu, loot table - Model itemu

src/main/java/com/example/block/LauncherBlock.java

public class LauncherBlock extends Block {

public LauncherBlock(Settings settings) {

super(settings);

}

}

1

2

3

4

5

src/main/java/com/example/block/ModBlocks.java

public static final RegistryKey<Block> LAUNCHER_BLOCK_KEY =

RegistryKey.of(

RegistryKeys.BLOCK,

Identifier.of(CustomBlock.MOD_ID, "launcher")

);

1

2

3

4

src/main/java/com/example/block/ModBlocks.java

Nyní bychom měli mít blok ve hře. Zatím jej získáme jen pomocí příkazu /give .

Funkčnost bloku
Funkčnost bloku budeme přidávat ve třídě LauncherBlock . Využijeme k tomu metodu
neighborUpdate , která se spouští pokaždé, když se aktualizuje blok v okolí. To můžeme

využít na kontrolu, zda je náš blok napájený redstone signálem a poté vystřelit entity.

Metoda vypadá následovně:

Kontrola redstone signálu

Jako první si zkontrolujeme, zda je aktuální blok napájený redstone signálem. Na to
můžeme využít metodu isReceivingRedstonePower ze třídy World , kde jako parametr
uvádíme pozice bloku, který chceme zkontrolovat. V tomto případě to bude aktuální blok a
jeho pozice máme uložené v parametru pos . Pokud blok není (zápor kontroly se dělá
pomocí vykřičníku !) napájený redstone signálem, tak dále pokračovat nebudeme.

Výběr entit

public static final Block LAUNCHER_BLOCK = register(

new LauncherBlock(AbstractBlock.Settings.create()),

LAUNCHER_BLOCK_KEY,

true

);

1

2

3

4

5

src/main/java/com/example/block/LauncherBlock.java

@Override

protected void neighborUpdate(BlockState state, World world, BlockPos pos,

Block sourceBlock, BlockPos sourcePos, boolean notify) {

super.neighborUpdate(state, world, pos, sourceBlock, sourcePos,

notify);

}

1

2

3

4

src/main/java/com/example/block/LauncherBlock.java

@Override

protected void neighborUpdate(BlockState state, World world, BlockPos pos,

Block sourceBlock, BlockPos sourcePos, boolean notify) {

if (!world.isReceivingRedstonePower(pos)) {

return;

}

super.neighborUpdate(state, world, pos, sourceBlock, sourcePos,

notify);

}

1

2

3

4

5

6

7

8

Dále vezmeme všechny entity, které stojí na bloku a vystřelíme je nahoru.

Na to použijeme metodu výběru entit v určité oblasti. Nejprve si určíme oblast, ze které
budeme vybírat entity. Na to si vytvoříme proměnnou typu Box . Oblast můžeme určit i
pomocí pozice bloku a protože známe pozici aktuálního bloku, tak stačí použít blok o 1 výše,
což můžeme udělat pomocí metody up ze třídy BlockPos .

Dále vybereme všechny entity v této oblasti pomocí metody getEntitiesByClass ze třídy
World . Jako parametry uvádíme třídu, ze které má entita být - pokud chceme všechny

entity, tak můžeme použít třídu Entity . Pokud chceme jen živé entity, tak můžeme použít
třídu LivingEntity .

Dále uvádíme oblast - box .

A jako poslední uvádíme funkci, kterou filtrujeme entity. My chceme vybrat entity, které stojí
na zemi, takže můžeme použít metodu isOnGround ze třídy Entity . Pro zjednodušený
zápis můžeme použít Entity::isOnGround . Jinak by zápis vypadal následovně entity ->
entity.isOnGround() .

Výsledný seznam entit si uložíme do proměnné entityList .

src/main/java/com/example/block/LauncherBlock.java

@Override

protected void neighborUpdate(BlockState state, World world, BlockPos pos,

Block sourceBlock, BlockPos sourcePos, boolean notify) {

if (!world.isReceivingRedstonePower(pos)) {

return;

}

Box box = new Box(pos.up());

super.neighborUpdate(state, world, pos, sourceBlock, sourcePos,

notify);

}

1

2

3

4

5

6

7

8

9

10

src/main/java/com/example/block/LauncherBlock.java

@Override

protected void neighborUpdate(BlockState state, World world, BlockPos pos,

Block sourceBlock, BlockPos sourcePos, boolean notify) {

if (!world.isReceivingRedstonePower(pos)) {

return;

}

Box box = new Box(pos.up());

var entityList = world.getEntitiesByClass(Entity.class, box,

Entity::isOnGround);

1

2

3

4

5

6

7

8

Přidání rychlosti entitě

Nyní projdeme seznam entit pomocí smyčky for a každou entitu vystřelíme nahoru.

Na to abychom entitu vystřelili stačí, abychom jí přidali rychlost ve směru nahoru. To
uděláme pomocí metody addVelocity , kde jako parametry uvádíme, jakou rychlost
chceme přidat v jednotlivých směrech - x , y , z . Nás zajímá směr nahoru - y .

Tato metoda ale samostatně nefunguje pro hráče a proto musíme ještě u entity nastavit, že
má změněnou rychlost. To uděláme nastavením vlastnosti velocityModified na hodnotu
true .

Nyní by nám blok měl fungovat a když se na něj postavíme nebo na něm stojí nějaké entity
a spustíme redstone, tak by všechny entity měly vyletět směrem nahoru.

Příště si doděláme cooldown po aktivaci a zároveň si ukážeme, jak měnit model bloku na
základě nastavení hodnoty.

super.neighborUpdate(state, world, pos, sourceBlock, sourcePos,

notify);

}

9

10

11

src/main/java/com/example/block/LauncherBlock.java

@Override

protected void neighborUpdate(BlockState state, World world, BlockPos pos,

Block sourceBlock, BlockPos sourcePos, boolean notify) {

if (!world.isReceivingRedstonePower(pos)) {

return;

}

Box box = new Box(pos.up());

var entityList = world.getEntitiesByClass(Entity.class, box,

Entity::isOnGround);

for (var entity : entityList) {

entity.addVelocity(0, 1, 0);

entity.velocityModified = true;

}

super.neighborUpdate(state, world, pos, sourceBlock, sourcePos,

notify);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

