21 Nastaveni hitboxu a kliknuti na blok

V této kapitole si ukazeme, jak nastavit hitbox bloku (tvar pevné ¢asti bloku). Dale si
ukazeme, jak mazeme pfidat funkénost bloku a po kliknuti na blok néco spustit. S tim si
ukazeme, jak vypsat zpravu do chatu a jak tuto zpravu formatovat (barva a styl textu). V
pFisti lekci si ukazeme, jak na misté bloku vytvofit explozi.

Nastaveni hitboxu bloku

V zakladu je hitbox ve tvaru krychle. Pokud chceme hitbox zménit, tak to musime udélat v
kodu.

Na to si musime nejprve pro blok vytvofit vlastni tfidu. Tridu si vytvofime ve sloZce
src/main/java/com/example/block . Tvorbu si mizeme diky rozSifeni Minecraft
development zjednodusit a misto vytvofeni nové Java tfidy muzeme zvolit vytvoreni
Minecraft tfidy.

Java Class
Kotlin Class/File
Minecraft Class
= File
[e] Package
package-info.java

module-info.java

o3 Resource Bundle

Dale ve vybéru zvolime Block a do textového pole napiSeme nazev bloku. Blok
pojmenujeme ExplodingBlock . Automaticky se nam vytvofi zakladni struktura pro tfidu
bloku.

src/main/java/com/example/block/ExplodingBlock.java

public class extends {
public (settings) {
super(settings);
}

Na to abychom mohli zménit hitbox bloku, tak musime prepsat metodu getOutlineShape
ze tfidy Block .

src/main/java/com/example/block/ExplodingBlock.java

@Override
protected (state, world,
pos, context) {
return super. (state, world, pos, context);
}

Tato metoda vraci VoxelShape , coZ je trojrozmérny objekt, ktery definujeme urcitym stylem.
V Minecraftu se tyto objekty vzdy skladaji z kvadra. Funguje to vlastné podobné jako
modelovani v Blockbench, ale tady musime objekt vytvofit pomoci kédu.

Blok, ktery jsem v pfedchozich lekcich tvoril se sklada ze dvou Casti. Proto si nejprve
vytvofime tyto dvé Casti a poté je spojime do jedné a to bude nas hitbox. Abychom nemuseli
hitbox tvofit pokazdé, kdyz si o néj hra zazada, tak si vytvofime neménné proménné, do
kterych si tyto Casti i vysledny hitbox ulozime.

() Vice éasti

Pokud ma vas blok vice ¢asti, tak bud muzete kazdou tuto ¢ast pridat i v kddu nebo
muzete vytvorit néjaky zjednoduseny tvar pro hitbox.

Samotny VoxelShape vytvofime pomoci metody createCuboidShape ze tfidy Block , kde
jen zadame soufadnice protéjSich roht naseho kvadru.

Praci si mazeme ulehdit tim, Ze se podivame na to, jak je model bloku definovany a
soufadnice si vezmeme pfimo z definice modelu (custom_model. json):

src/main/resources/assets/custom-block/models/block/custom_model.json

"elements": [

{
"from": [0, 0, 0],
"to": [16, 8, 16],
b
i
"from": [d, 8, 4],
nto": [12, 16, 121,
3

Souradnice (rozméry) jednotlivych ¢asti bloku najdeme ve vlastnosti elements , kde mame
pro kazdy kvadr vlastnosti from a to . Sta€i nam tyto Cisla pfepsat do metody
createCuboidShape atim mame praci hotovou.

Vytvofime si tedy podle modelu bloku dvé Casti:

src/main/java/com/example/block/ExplodingBlock.java

private static final BOTTOM_SHAPE = . (o,
0, 0, 16, 8, 16);
private static final TOP_SHAPE = . (4, 8,

4, 12, 16, 12);

Casti jsem pojmenoval podle toho, kde se nachazi BOTTOM_SHAPE - spodni &ast,
TOP_SHAPE - vrchni ¢ast.

Nasledné nam jen staci tyto ¢asti spojit do jedné a opét ulozit do proménné, kterou si
muZeme nazvat napfiklad SHAPE . Casti miZeme spojovat pomoci metody union ze t¥idy
VoxelShapes . Tvarl mizeme spoijit kolik chceme.

src/main/java/com/example/block/ExplodingBlock.java

private static final SHAPE = . (BOTTOM_SHAPE,
TOP_SHAPE) ;

Nyni uz staCi abychom jen prepsali metodu getOutlineShape tak, aby vzdy vracela
vysledny SHAPE a tim mame hitbox hotovy.

src/main/java/com/example/block/ExplodingBlock.java

public class extends {

public (settings) {

super(settings);
}
private static final BOTTOM_SHAPE =
. (o0, 0, 0, 16, 8, 16);

private static final TOP_SHAPE = . (4,
8, u, 12, 16, 12);

private static final SHAPE =

(BOTTOM_SHAPE, TOP_SHAPE);

@Override
protected (state,
world, pos, context) {

return SHAPE;

Aby se nam hitbox zobrazil ve hie, tak musime zménit, jakou tfidu pouzivame pfi pfidani
bloku do hry. To zménime ve tfidé ModBlocks , kde u bloku CUSTOM_MODEL zménime new
Block() na new ExplodingBlock() .

src/main/java/com/example/block/ModBlocks.java

public static final CUSTOM_MODEL = ¢
new (. . 0),
CUSTOM_MODEL_KEY,
true

g

Tim mame hotovo a blok by se nam mél ve hie zobrazovat s novym hitboxem.

Pred

>

Kliknuti na blok

Nyni si ukazeme, jak bloku pfidat néjakou funk&nost. Konkrétné si ukazeme, jak do chatu
vypsat zpravu po kliknuti pravym tlaCitkem mysi. Pfisté si k tomu pfidame vytvoreni
vybuchu. Na to vyuZijeme metodu onUse() . Metodu pfidame tak, Zze zatneme psat onUse
a poté vybereme metodu z napoveédy. Automaticky se nam pak doplni nasledujici kdd:

src/main/java/com/example/block/ExplodingBlock.java

@Override
protected (state, world, pos,
player, hit) {
return super. (state, world, pos, player, hit);
}

Tato metoda se zavola vzdy, kdyz hrac klikne pravym tlaCitkem mysi na blok.
Vypsani zpravy do chatu

Kdyz chceme poslat zpravu hradi, tak k mizeme vyuzit metodu sendMessage ze tfidy
PlayerEntity (parametr player). Tato metoda pfijima argument typu Text , coz je néco
jiného, nez string , ktery zname jako textovy fetézec. Tfida Text v Minecraftu
reprezentuje text, u kterého ale navic mdZzeme ménit styl. Zakladni text vytvofime pomoci
metody literal , kam jako argument napiSeme textovy fetézec (string).

Cely kéd na vypsani zpravy do chatu tedy bude vypadat nasledovné:

src/main/java/com/example/block/ExplodingBlock.java

@Override

protected (state, world, pos,
player, hit) {
player. (. ("Ahoj"));
return super. (state, world, pos, player, hit);
}

Kdyz si nyni spustime hru a klikneme pravym tlacitkem mysSi na nas blok, tak narazime na
problém - zprava Ahoj se nam do chatu vypiSe dvakrat. To je zpusobené tim, Ze pokud
hrajeme singleplayer, tak mame na pocitaci spustény jak server, tak clienta (stara se o
renderovani). Oba se nam snazi poslat danou zpravu a proto se zprava vypiSe dvakrat. To
muzeme vyfesit jednoduse tak, Zze v kddu zkontrolujeme, zda se akce spustila na serveru a
pokud ano, tak vypiSeme zpravu.

Tuto informaci muzeme zjistit ze tfidy World , ktera obsahuje informace o svété, kde mame
informaci isClient . MUzeme tedy kéd upravit tak, Ze pokud se dana metoda spousti na
strané clienta, tak se Zadna akce neprovede. To udélame tak, ze vratime hodnotu
ActionResult.PASS .

src/main/java/com/example/block/ExplodingBlock.java

@Override
protected (state, world, pos,
player, hit) {
if (world.isClient) {
return .PASS;
}
player. (. ("Ahoj"));
return super. (state, world, pos, player, hit);
}

Formatovani textu

Kdyz uz umime vypsat zpravu, tak mazeme chtit, aby zprava i néjak hezky vypadala.
Muzeme si chtit tfeba nastavit barvu textu, néjaké zvyraznéni, podtrzeni atd.

Na formatovani textu mame ve tfidé Text metodu formatted , kde uvadime format, ktery
chceme aplikovat. Format se vybira ze tfidy Formatting a mame zde nasledujici moznosti:

Barvy

BLACK
DARK_BLUE
DARK_GREEN
DARK_AQUA

DARK_RED
DARK_PURPLE
GOLD

GRAY
DARK_GRAY
BLUE

GREEN

AQUA

RED
LIGHT_PURPLE
YELLOW
WHITE

Vzhled

OBFUSCATED - ménici se znaky
BOLD - tuCny text
STRIKETHROUGH - pfeSkrtnuty text
UNDERLINE - podtrzeny text
ITALIC - Kkurziva

Formatd muzeme aplikovat i vice a to tak, Ze jednotlivé formaty oddélime ¢arkou.
Priklady pouziti
vypsani zlatého textu
player. (. ("Ahoj™). C .RED));
vypsani zlatého textu, ktery je zaroven podtrzeny:

player. (. ("Ahoj"). (.RED,

Skladani textu

vvvvvv

pro kazdé takoveé slovo vytvofrit zvlast Text s aplikovanym formatem. Napfiklad bychom
chtéli pfivitat hraCe a napsat mu zpravu Ahoj, vitej! a kazdou Cast mit jinym stylem. Text
muzeme skladat pomoci metody append , ktera je soucasti tfidy Text . Do této metody poté
jako argument uvedeme text (opét typu Text), ktery chceme pfidat.

Priklad pouziti:

1

player.sendMessage(Text.literal("Ahoj
").formatted(Formatting.RED,Formatting.UNDERLINE)

.append(Text.

literal(", vitej!").formatted(Formatting.GOLD)));

Cely kéd s textem bude vypadat nasledovné:

src/main/java/com/example/block/ExplodingBlock.java

~N O o EW

0o

10
11

@Override

protected ActionResult onUse(BlockState state, World world, BlockPos pos,
PlayerEntity player, BlockHitResult hit) {
if (world.isClient) {
return ActionResult.PASS;

player.sendMessage(Text.literal("Ahoj").formatted(Formatting.RED,
Formatting.UNDERLINE)
.append(Text.literal(", vitej!").formatted(Formatting.GOLD)));

return super.onlUse(state, world, pos, player, hit);

Pro zajimavost

Zkuste vymyslet, jak byste napsali duhovy text (text, kde kazdé pismeno ma jinou barvu).

Pokud si myslite, Ze musime kazdé pismeno napsat zvlast a nastavit mu zvlast barvu, tak je
to spravné. Kéd by vypadal nasledovné:

player.sendMessage(Text.literal("D").formatted(Formatting.RED)

.append(Text.
.append(Text.
.append(Text.
.append(Text.
.append(Text.
.append(Text.
.append(Text.
.append(Text.
.append(Text.

literal("u").formatted(Formatting.GOLD))
literal("h").formatted(Formatting.YELLOW))
literal("o").formatted(Formatting.GREEN))
literal("v").formatted(Formatting.BLUE))
literal("y ").formatted(Formatting.DARK_PURPLE))
literal("t").formatted(Formatting.LIGHT_PURPLE))
literal("e").formatted(Formatting.RED))
literal("x").formatted(Formatting.GOLD))
literal("t").formatted(Formatting.YELLOW)));

