
14 Přidání bloku do inventáře, textura bloku
Z minulé lekce nám ještě zbývá poslední krok, aby se nám blok zobrazil ve hře. Ve třídě
CustomBlock musíme do metody onInitialize přidat počáteční nastavení třídy
ModBlocks , aby se nám přidaly všechny bloky z této třídy (zatím máme jen jeden). To

uděláme pomocí metody initialize , kterou jsme si do třídy ModBlocks přidávali.

Když nyní hru spustíme, tak bychom měli mít blok přidaný do hry. Můžeme jej ale získat jen
pomocí příkazu /give @s custom-block:condensed_dirt . Blok také zatím nemá žádnou
texturu a vypadá následovně:

Přidání do kreativního inventáře
Blok se do inventáře přidává stejným způsobem jako obyčejný item, protože přidáváme item,
který reprezentuje daný blok. Ukážeme si, jak přidat item na konkrétní místo v záložce. Tím,

CustomBlock.java

@Override

public void onInitialize() {

// This code runs as soon as Minecraft is in a mod-load-ready state.

// However, some things (like resources) may still be uninitialized.

// Proceed with mild caution.

LOGGER.info("Hello Fabric world!");

ModBlocks.initialize();

}

1

2

3

4

5

6

7

že vytváříme variantu hlíny, tak jej můžeme umístit za hlínu.

Kód na přidání itemu do kreativního inventáře píšeme do metody initialize ve třídě
ModBlocks .

Item přidáváme pomocí metody modifyEntriesEvent ze třídy ItemGroupEvents , kde jako
argument uvádíme, do jaké skupiny chceme item přidat. V našem případě to bude skupina
přírodních bloků, protože tam se nachází hlína. Skupinu itemů získáme ze třídy ItemGroups
pomocí ItemGroups.NATURAL .

Když máme získanou skupinu, do které chceme item přidat, tak použijeme metodu
register pro úpravu této skupiny. Jako argument uvádíme tzv. lambda funkci (nemusíte

řešit, co přesně to je). Lambda funkce je ve tvaru parametr -> kód . V našem případě je
parametr skupina itemů (můžeme nazvat group). V kódu funkce můžeme do této skupiny
přidat item pomocí metody addAfter - metoda přidává item za nějaký již existující item.
Jako první argument uvádíme item, za který chceme něco přidat - v našem případě
Items.DIRT . Ve třídě Items najdete všechny itemy. Jako druhý argument uvádíme item,

který chceme přidat - v našem případě je to item k bloku. Ten získáme pomocí metody
asItem ze třídy Block - CONDENSED_DIRT.asItem() .

ModBlocks.java

public static void initialize() {

ItemGroupEvents.modifyEntriesEvent(ItemGroups.NATURAL)

.register(group -> {

group.addAfter(Items.DIRT, CONDENSED_DIRT.asItem());

});

}

1

2

3

4

5

6

Přidání textury
Ukázkovou texturu můžete stáhnout na tomto odkazu.

Na to, aby se nám textura zobrazovala ve hře, potřebujeme udělat několik věcí.

Textury se stejně jako u itemů přidávají do složky resources . Ve složce
resources/assets/custom-block si vytvoříme novou složku textures/block .

Do této nově vytvořené složky přesuneme staženou texturu. Poté musíme texturu
přejmenovat stejně jako se jmenuje náš blok. Soubor přejmenujeme kliknutím pravým
tlačítkem myši a zvolíme Refactor > Rename a zadáme nový název souboru
condensed_dirt.png .

Přidání modelu
Dále potřebujeme přidat model bloku. To je soubor, který popisuje, jaký tvar a texturu má
blok mít. My použijeme úplně nejjednodušší model a to je obyčejná krychle, která má na
všech stranách stejnou texturu.

Modely se opět přidávají do složky resources . Ve složce resources/assets/custom-
block si vytvoříme novou složku models/block .

V této složce si dále vytvoříme nový soubor s názvem bloku condensed_dirt.json .

Opět se jedná o json soubor, kde budeme mít definovaný model. Stejně jako u itemu, tak i
model bloku může vycházet z jiného existujícího modelu. V našem případě použijeme model
minecraft:block/cube_all , který reprezentuje výše popsanou krychli. Dále přidáme

texturu, která se aplikuje na všechny strany (vlastnost all) custom-
block:block/condensed_dirt . Celý soubor bude vypadat následovně:

1. přidat obrázek s texturou
2. přidat model bloku
3. přidat stav bloku

Vytvoření více složek

Při vytváření nové složky je možné vytvořit více složek v sobě. To uděláte tak, že
jednotlivé složky oddělíte znakem / . Například tedy textures/block vám vytvoří
složku textures a v ní složku block .

models/block/condensed_dirt.json

{

"parent": "minecraft:block/cube_all",

1

2

Stav bloku

Jako poslední musíme přidat stav bloku. Tyto soubory reprezentují, jaké jednotlivé modely a
textury může blok mít. Dále mezi těmito stavy můžeme přepínat pomocí kódu. I když se náš
blok nijak nemění, tak musíme přidat alespoň jeden základní stav.

Stavy se nachází ve složce resources . Ve složce resources/assets/custom-block si
vytvoříme novou složku blockstates .

V této složce si dále vytvoříme nový soubor s názvem bloku condensed_dirt.json .

Samotný soubor obsahuje vlastnost variants , kde je seznam všech možných modelů
bloku. Každá varianta musím být pojmenovaná. Základní varianta žádné jméno nemá a
použijeme tedy jen prázdné uvozovky. Pro každou variantu dále uvádíme, jaký model se má
použít - vlastnost model . V našem případě je to model custom-
block:block/condensed_dirt .

Celý soubor bude vypadat následovně:

Zobrazení ve hře
Nyní bychom měli blok vidět ve hře. Textura bude aplikovaná zatím jen na blok a item bude
mít pořád neznámou texturu. Je to proto, že pro item jsme zatím žádnou texturu nepřidali. To
si ukážeme v následující lekci.

"textures": {

"all": "custom-block:block/condensed_dirt"

}

}

3

4

5

6

blockstates/condensed_dirt.json

{

"variants": {

"": {

"model": "custom-block:block/condensed_dirt"

}

}

}

1

2

3

4

5

6

7

