
09 Úprava chování hůlky
Aktuálně nám hůlka sice vytváří blesky, ale nechová se úplně tak, jak bychom si
představovali. Blesk se sice vytvoří, ale vždy jen ve směru nějaké světové strany (sever,
jih,...) a blesk se nevytvoří na povrchu, ale může se vytvořit i ve vzduchu. Toto chování si
nyní upravíme.

Toto řešení bude o něco složitější, než naše aktuální řešení. Bude zahrnovat více
matematiky, kterou nebudu vysvětlovat do detailu.

Budeme upravovat kód z minulé hodiny a vždy budou zvýrazněné změněné/přidané řádky.

Získání směru
Nejprve si opravíme získání směru, kam se hráč dívá. Bohužel není jednoduchá metoda,
kterou můžeme zavolat a vrátí nám směr, kterým se hráč dívá. Můžeme to ale zjistit z jiných
dostupných údajů.

V Minecraftu se otočení hlavy hráče udává pomocí dvou čísel pitch (směr nahoru a dolů) a
yaw (směr doleva a doprava). Tyto údaje získáme ze třídy PlayerEntity pomocí metod
getPitch a getYaw . Z těchto dvou údajů si poté pomocí metody fromPolar ze třídy
Vec3d můžeme získat směr, kterým se hráč dívá.

Rovnou si můžeme získat hodnotu, o kterou později posuneme pozici hráče a tím zjistíme,
kam máme umístit blesk. Tuto hodnotu si můžete představit jako šipku, která jde od hráče
směrem, kterým se dívá a konec šipky určuje, kam se umístí blesk. Této šipce se říká
vektor.

Nejprve musíme šipku (vektor) upravit tak, aby měla délku 1, abychom tuto vzdálenost mohli
jednoduše vynásobit nějakým číslem a do této vzdálenosti se blesk položí. To uděláme
pomocí metody normalize . Ta upraví vektor (šipku) tak, aby měl délku 1. Poté jej jen
vynásobíme pomocí metody multiply , kde jako parametr uvedeme vzdálenost, do které
chceme blesk umístit.

Vec3d.fromPolar(user.getPitch(), user.getYaw());1

Typ proměnné var

V předchozích lekcích jsme si říkali, že vždy musíme uvádět typ hodnoty proměnné. To
si ale můžeme zjednodušit a místo typu uvádět slovo var . Typ proměnné se pak
nastaví podle první hodnoty, kterou do ní uložíme.

Získání pozice bloku
Dále si potřebujeme získat blok, který je v námi určené vzdálenosti od hráče a ideálně
bychom chtěl, aby blesk udeřil do země a ne do vzduchu.

Pozici, kam má udeřit blesk získáme tak, že nejprve si zjistíme pozici očí hráče (metoda
getEyePos) a posuneme ji o danou vzdálenost z předchozího kroku (metoda add).

Abychom získali pozici na povrchu, tak nejprve musíme získanou pozici převést na pozici
bloku ve světě. Na to můžeme použít metodu ofFloored ze třídy BlockPos . Tato metoda
zaokrouhlí souřadnice, které jí předáme a vrátí nám pozici bloku, ve kterém se tyto
souřadnice nachází.

Zjištění nejvyššího bloku
Jako poslední krok musíme zjistit, jaký nejvyšší blok se na těchto souřadnicích nachází. Na
to máme ve třídě World metodu getTopPosition .

V Minecraftu je pro celý svět vytvořená mapa výšky (heightmap), kde jsou uložené
informace o tom, jaký nejvyšší blok se na každém místě nachází. Existuje více druhů těchto
map. Pro nás jsou důležité následující možnosti:

public TypedActionResult<ItemStack> use(World world, PlayerEntity user,

Hand hand) {

if (world.isClient) {

return TypedActionResult.pass(user.getStackInHand(hand));

}

var offset = Vec3d.fromPolar(user.getPitch(), user.getYaw())

.normalize().multiply(10);

BlockPos blockPos =

user.getBlockPos().offset(user.getHorizontalFacing(), 10);

LightningEntity lightning = new

LightningEntity(EntityType.LIGHTNING_BOLT, world);

lightning.setPosition(blockPos.toCenterPos());

world.spawnEntity(lightning);

return TypedActionResult.success(user.getStackInHand(hand));

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

var pos = user.getEyePos().add(offset);1

BlockPos blockPos = BlockPos.ofFloored(pos);1

Nyní by nám kód měl fungovat a blesk by se měl umístit 10 bloků před hráče na pevný blok
na povrchu.

MOTION_BLOCKING - jakýkoliv pevný blok, přes který hráč nemůže projít nebo tekutina
(voda, láva)
MOTION_BLOCKING_NO_LEAVES - stejné, jako předchozí jen nezahrnuje listy

blockPos = world.getTopPosition(Heightmap.Type.MOTION_BLOCKING, blockPos);1

public TypedActionResult<ItemStack> use(World world, PlayerEntity user,

Hand hand) {

if (world.isClient) {

return TypedActionResult.pass(user.getStackInHand(hand));

}

var offset = Vec3d.fromPolar(user.getPitch(), user.getYaw())

.normalize().multiply(10);

var pos = user.getEyePos().add(offset);

BlockPos blockPos = BlockPos.ofFloored(pos);

blockPos = world.getTopPosition(Heightmap.Type.MOTION_BLOCKING,

blockPos);

LightningEntity lightning = new

LightningEntity(EntityType.LIGHTNING_BOLT, world);

lightning.setPosition(blockPos.toCenterPos());

world.spawnEntity(lightning);

return TypedActionResult.success(user.getStackInHand(hand));

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Poznámka

Původní řádek

jsme změnili na

BlockPos blockPos =

user.getBlockPos().offset(user.getHorizontalFacing(), 10);

1

BlockPos blockPos = BlockPos.ofFloored(pos);1

Vytvoření exploze
Jako poslední věc si k blesku přidáme ještě explozi. To není nijak složité a ve třídě World
na to existuje metoda createExplosion . Tato metoda má spoustu parametrů, ale
zjednodušuje nám tvorbu exploze.

Jako první parametr uvádíme entitu, která je původem exploze. V našem případě to může
být blesk - proměnná lightning .

Dále uvádíme pozice, kde se má exploze vytvořit. Ty můžeme vzít z proměnné blockPos ,
protože tyto souřadnice používáme pro umístění blesku. Souřadnice musíme uvést
jednotlivě jako pozice x , y a z (v tomto pořadí). Ty získáme pomocí metod getX , getY
a getZ .

Další parametr je už zajímavější a to je síla exploze. To se uvádí jako desetinné číslo proto
za číslo napíšeme písmeno f . Pro porovnání - TNT má sílu exploze 4f a charged creeper
6f .

Předposlední parametr určuje, zda exploze vytvoří i oheň. true - ano, false - ne.

A poslední parametr je typ exploze. Tím se upravuje, jestli se exploze chová jako výbuch
moba nebo bloku. Například ovlivňuje, zda vypadnou všechny bloky, které se zničí. To lze v
Minecraftu nastavit pomocí gamerule a nastavuje se to zvlášť pro výbuchy mobů a bloků.
Vybereme jednu z hodnot:

Celá metoda vytvoření exploze bude vypadat následovně:

Umístění kódu

Kód umístíme na konec pod řádek, kde umisťujeme blesk:
world.spawnEntity(lightning);

Pozor

Pokud zadáte moc vysoké číslo, tak se může stát, že vám hra spadne a daný svět už
nepůjde načíst. Tato metoda není dělaná na vysoké hodnoty a proto exploze s vyšší
sílou mohou ničit bloky v nepředvídatelných tvarech (díra po explozi nebude vypadat
hezky). Zkoušejte proto na vlasní riziko.

World.ExplosionSourceType.MOB

World.ExplosionSourceType.BLOCK

world.createExplosion(lightning, blockPos.getX(), blockPos.getY(),

blockPos.getZ(), 1f, true, World.ExplosionSourceType.MOB);

1

Celá metoda použití hůlky tedy bude vypadat následovně:

public TypedActionResult<ItemStack> use(World world, PlayerEntity user,

Hand hand) {

if (world.isClient) {

return TypedActionResult.pass(user.getStackInHand(hand));

}

var offset = Vec3d.fromPolar(user.getPitch(), user.getYaw())

.normalize().multiply(10);

var pos = user.getEyePos().add(offset);

BlockPos blockPos = BlockPos.ofFloored(pos);

blockPos = world.getTopPosition(Heightmap.Type.MOTION_BLOCKING,

blockPos);

LightningEntity lightning = new

LightningEntity(EntityType.LIGHTNING_BOLT, world);

lightning.setPosition(blockPos.toCenterPos());

world.spawnEntity(lightning);

world.createExplosion(lightning, blockPos.getX(), blockPos.getY(),

blockPos.getZ(), 4f, true, World.ExplosionSourceType.MOB);

return TypedActionResult.success(user.getStackInHand(hand));

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

