
08 Blesková hůlka
V této lekci si ukážeme, jak upravit chování itemu, když jej hráč použije. Přidáme si tedy
hůlku, která vytvoří blesk, když s ní hráč klikne pravým tlačítkem myši.

Abychom mohli upravit chování itemu, tak si nejprve pro item musíme vytvořit novou třídu.
Tu můžeme pojmenovat například LightningStick Třídu vytvoříme kliknutím pravým
tlačítkem myši na složku a zvolíme New > Java Class. Třídu vytvoříme ve stejné složce, jako
máme naše ostatní třídy (ModItems , CustomItem).

Když vytváříme nový item, tak chceme, aby byl stejný jako všechny ostatní itemy ve hře a
navíc měl nějaké námi upravenou funkčnost nebo vlastnosti. Proto musíme říct, že tato třída
rozšiřuje třídu základního itemu. To uděláme tak, že za název třídy doplníme extends Item .

Nyní nám editor bude psát následující chybu:

Tato chyba znamená, že třída Item má základní konstruktor (pro nastavení itemu), ale naše
třída ho nemá. Stačí kliknout na Create constructor matching super a konstruktor se nám
automaticky doplní. Případně si jej můžeme doplnit ručně.

public class LightningStick {

}

1

2

public class LightningStick extends Item {

}

1

2

public class LightningStick extends Item {

public LightningStick(Settings settings) {

super(settings);

}

}

1

2

3

4

5

Volání super znamená, že se volá metoda ze třídy, kterou rozšiřujeme.

Použití itemu
Abychom změnili, co se stane, když hráč item použije (klikne pravým tlačítkem myši), tak
musíme použít jednu z předem definovaných metod, které u základního itemu nic nedělají.
Máme dostupné následující metody:

My použijeme metodu use , ostatní si ukážeme později.

Stačí napsat use a v nápovědě by se nám všechny tyto metody měly nabídnout. Stačí tedy
vybrat tu, kterou chceme použít a opět se nám doplní část kódu.

Můžeme si všimnout, že se nám automaticky doplnily i parametry metody. Tato metoda se
volá automaticky vždy, když chce hráč použít item a Minecraft tuto metodu volá právě s
těmito parametry. Díky tomu máme v metodě dostupné informace o světě world , o hráči,
který item použil user a dokonce i informace o tom, ve které ruce hráč item drží hand .

Stejně jako v konstruktoru se v základu zavolá metoda z obecnější třídy (slovo super), to
ale můžeme změnit a můžeme si napsat vlastní kód.

use

kliknutí pravým tlačítkem myši do vzduchu

useOnBlock

kliknutí pravým tlačítkem na blok
useOnEntity

kliknutí pravým tlačítkem na entitu

public class LightningStick extends Item {

public LightningStick(Settings settings) {

super(settings);

}

@Override

public TypedActionResult<ItemStack> use(World world, PlayerEntity

user, Hand hand) {

return super.use(world, user, hand);

}

}

1

2

3

4

5

6

7

8

9

10

Označení @Override

Tímto označujeme metodu, kterou přepisujeme chování základní třídy. V našem
případě je to třída Item .

Kód, který chceme, aby se provedl při použití itemu budeme psát nad řádek s výrazem
return (vrácení hodnoty). Vytvoříme si tedy nad tímto řádkem nový řádek, kam budeme

psát kód.

Kontrola spuštění

Jako první musíme zkontrolovat, jestli se kód spouští u hráče nebo na serveru. To je kvůli
tomu, že kdyby se kód spustil jen u hráče, tak by se mohlo stát, že se o tom server nedozví
a tuto akci uvidí jen hráč nebo se naopak spustí dvakrát.

Tuto informaci máme v parametru world.isClient . Kontrolu provádíme pomocí výrazu
if , kde do závorky napíšeme podmínku, kterou chceme zkontrolovat. Kód, který chceme

aby se provedl, když bude podmínka splněná píšeme do složených závorek.

Pokud se kód spouští u hráče, tak nechceme dělat nic. Tato metoda musí vracet výsledek
použití itemu. Možné hodnoty najdeme ve třídě TypedActionResult . Pokud nechceme
dělat nic, tak použijeme metodu pass . Tam musíme jako parametr uvést informace o itemu,
který hráč drží v ruce. Tyto informace získáme z proměnné user pomocí metody
getStackInHand . Tam musíme předat informaci o tom, v jaké ruce použitý item drží - to

máme v proměnné hand .

Vytvoření blesku
Nyní se přesuneme k samotnému vytvoření blesku. Blesk se v Minecraftu bere jako entita.
Na to, abychom nějakou entitu přidali do světa musíme určit, kde se má objevit (souřadnice)
a poté určit, o jakou entitu se jedná.

Pozice

public TypedActionResult<ItemStack> use(World world, PlayerEntity user,

Hand hand) {

if (world.isClient) {

}

return super.use(world, user, hand);

}

1

2

3

4

5

6

public TypedActionResult<ItemStack> use(World world, PlayerEntity user,

Hand hand) {

if (world.isClient) {

return TypedActionResult.pass(user.getStackInHand(hand));

}

return super.use(world, user, hand);

}

1

2

3

4

5

6

Jako pozici můžeme vzít pár bloků před hráčem. Vytvoříme si tedy proměnnou blockPos
typu BlockPos a do ní si uložíme pozici hráče user.getBlockPos() . Tím bychom ale blesk
vytvořili přímo na souřadnicích hráče, takže ještě musíme souřadnice o něco posunout. To
uděláme pomocí metody offset , kde jako parametry zadáme směr, kterým chceme
souřadnici posunout a o kolik bloků ji chceme posunout. Směr, kterým se hráč dívá zjistíme
pomocí user.getHorizontalFacing() a vzdálenost zadáme jako celé číslo.

Entita blesku

Entitu blesku si uložíme do proměnné typu LightningEntity s názvem lightning . Do ní
uložíme nový objekt třídy LightningEntity , kde jako parametry uvádíme typ entity a
informace o světě, kam chceme entitu přidat. Typy entit máme dostupné ve třídě
EntityType a blesk má hodnotu LIGHTNING_BOLT . Informace o světě máme uložené v

parametru world .

Přidání entity do světa

Nejprve musíme entitě nastavit pozice, kde se má objevit. To uděláme pomocí metody
setPosition , která je dostupná u všech entit. Jako parametr uvádíme pozice ve světě. V

proměnné blockPos máme uložené pozice bloku a ty můžeme převést na tvar, který

public TypedActionResult<ItemStack> use(World world, PlayerEntity user,

Hand hand) {

if (world.isClient) {

return TypedActionResult.pass(user.getStackInHand(hand));

}

BlockPos blockPos =

user.getBlockPos().offset(user.getHorizontalFacing(), 10);

return super.use(world, user, hand);

}

1

2

3

4

5

6

7

8

public TypedActionResult<ItemStack> use(World world, PlayerEntity user,

Hand hand) {

if (world.isClient) {

return TypedActionResult.pass(user.getStackInHand(hand));

}

BlockPos blockPos =

user.getBlockPos().offset(user.getHorizontalFacing(), 10);

LightningEntity lightning = new

LightningEntity(EntityType.LIGHTNING_BOLT, world);

return super.use(world, user, hand);

}

1

2

3

4

5

6

7

8

9

10

vyžaduje tato metoda tak, že použijeme metodu toCenterPos() , která nám vrátí
souřadnice středu bloku.

Samotnou entitu přidáme pomocí metody spawnEntity ze třídy World , kde jako parametr
uvedeme entitu, kterou chceme do světa přidat.

Úspěšné použití itemu

Na závěr musíme vrátit informaci o tom, že se item úspěšně použil. Na to opět použijeme
třídu TypedActionResult , ale tentokrát použijeme metodu success - úspěch. Stejně jako
u neúspěšného použití i tady musíme jako parametr předat item, který hráč použil.

Původní řádek s return super můžeme smazat.

public TypedActionResult<ItemStack> use(World world, PlayerEntity user,

Hand hand) {

if (world.isClient) {

return TypedActionResult.pass(user.getStackInHand(hand));

}

BlockPos blockPos =

user.getBlockPos().offset(user.getHorizontalFacing(), 10);

LightningEntity lightning = new

LightningEntity(EntityType.LIGHTNING_BOLT, world);

lightning.setPosition(blockPos.toCenterPos());

return super.use(world, user, hand);

}

1

2

3

4

5

6

7

8

9

10

11

12

public TypedActionResult<ItemStack> use(World world, PlayerEntity user,

Hand hand) {

if (world.isClient) {

return TypedActionResult.pass(user.getStackInHand(hand));

}

BlockPos blockPos =

user.getBlockPos().offset(user.getHorizontalFacing(), 10);

LightningEntity lightning = new

LightningEntity(EntityType.LIGHTNING_BOLT, world);

lightning.setPosition(blockPos.toCenterPos());

world.spawnEntity(lightning);

return super.use(world, user, hand);

}

1

2

3

4

5

6

7

8

9

10

11

12

13

Přidání itemu do hry
Dále musíme item ještě přidat do hry. To uděláme stejně jako u předchozího itemu ve třídě
ModItems a použijeme na to naši metodu register . A jako texturu můžeme použít

obyčejnou tyčku, která už ve hře je.

Registrace itemu
Rozdíl bude v tom, že nyní nemáme třídu Item , ale náš item používá třídu
LightningStick . A proto, že naše metoda vrací jako hodnotu třídu Item , tak musíme určit,

že ve skutečnosti se jedná o naši třídu LightningStick a ne o Item to uděláme tak, že
před metodu register napíšeme do závorky LightningStick .

Přidání textury

Na přidání textury si musíme ve složce s modely vytvořit json soubor s názvem našeho
itemu.

public TypedActionResult<ItemStack> use(World world, PlayerEntity user,

Hand hand) {

if (world.isClient) {

return TypedActionResult.pass(user.getStackInHand(hand));

}

BlockPos blockPos =

user.getBlockPos().offset(user.getHorizontalFacing(), 10);

LightningEntity lightning = new

LightningEntity(EntityType.LIGHTNING_BOLT, world);

lightning.setPosition(blockPos.toCenterPos());

world.spawnEntity(lightning);

return TypedActionResult.success(user.getStackInHand(hand));

}

1

2

3

4

5

6

7

8

9

10

11

12

13

14

public static final LightningStick LIGHTNING_STICK = (LightningStick)

register(

new LightningStick(new Item.Settings().maxCount(1)),

"lightning_stick"

);

1

2

3

4

Tentokrát bude soubor velmi jednoduchý a jen určíme, že se má použít stejný model, jako
pro item tyčky v Minecraftu.

Když nyní spustíme hru, tak bychom měli mít nový item s id custom-item:lightning_stick
a když s touto tyčkou klikneme pravým tlačítkem myši, tak by se před námi měl objevit blesk.

Item můžeme získat jen pomocí příkazu

{

"parent": "minecraft:item/stick"

}

1

2

3

/give @s custom-item:lightning_stick1

Poznámka

Souřadnice blesku budou vždy posunuté ve směru jedné ze světových stran (sever, jih,
východ, západ). To je způsobené tím, že metoda getHorizontalFacing() u hráče
vrací pouze jednu ze světových stran a ne přesný směr, kterým se hráč dívá.

Kód by šlo upravit i tak, aby se blesk objevil opravu přímo před hráčem a bral se přesný
směr, kterým se hráč dívá.

