
07 Item jako jídlo
V této lekci si ukážeme, jak nastavit, aby se náš item dal jíst a při snězení dal hráči nějaký
efekt.

Na toto se v módech používá třída FoodComponent . Ta obsahuje veškeré nastavení, které
se týká jídla.

Ve třídě ModItems si přidáme proměnnou typu FoodComponent . U té si nastavíme, jaké má
vlastnosti a poté tento komponent aplikujeme na náš item.

Proměnnou si pojmenujeme podle toho, co bude dělat. Například pokud bude hráči dávat
efekt rychlosti, tak ji můžeme pojmenovat SPEED_FOOD_COMPONENT .

Nová komponenta se vytváří pomocí new FoodComponent.Builder() . Zatím nám editor
bude zobrazovat chybu, ale to je správně, protože komponentu nemáme dopsanou.

Jednotlivé vlastnosti nastavujeme pomocí volání metod. Pro přehlednost doporučuji každou
metodu psát na samostatný řádek.

Důležité

Tuto proměnnou musíme v kódu umístit před proměnnou s naším itemem, protože
jinak by nám editor napsal chybu, že tento komponent nemůžeme použít.

public class ModItems {

public static final FoodComponent SPEED_FOOD_COMPONENT = new

FoodComponent.Builder()

public static final Item MAGIC_DUST = register(

new Item(new

Item.Settings().maxCount(16).food(SPEED_FOOD_COMPONENT)),

"magic_dust"

);

1

2

3

4

5

6

7

alwaysEdible

tímto nastavíme, že item můžeme jíst kdykoliv - i když má hráč plný hunger bar

public static final FoodComponent SPEED_FOOD_COMPONENT = new

FoodComponent.Builder()

.alwaysEdible()

1

2

nutrition

určuje, kolik hunger baru se hráči doplní
parametr je celé číslo

public static final FoodComponent SPEED_FOOD_COMPONENT = new

FoodComponent.Builder()

.alwaysEdible()

.nutrition(1)

1

2

3

saturationModifier

upravuje, kolik hunger baru se hráči doplní
parametr je desetinné číslo (za číslo musíme napsat f)

public static final FoodComponent SPEED_FOOD_COMPONENT = new

FoodComponent.Builder()

.alwaysEdible()

.nutrition(1)

.saturationModifier(1f)

1

2

3

4

Vzorec na doplnění jídla

Celý vzorec pro výpočet, kolik se hráči doplní jídla je nutrition *
saturationModifier * 2

Jídlo funguje stejně jako životy, takže 1 je půlka jednoho masa v hunger baru

snack

nastavuje dobu jezení na polovinu (0.8s). Jinak je tato doba 1.6s

public static final FoodComponent SPEED_FOOD_COMPONENT = new

FoodComponent.Builder()

.alwaysEdible()

.nutrition(1)

.saturationModifier(1f)

.snack()

1

2

3

4

5

statusEffect

určuje, jaký efekt hráč po snězení dostane
jako parametr uvádíme objekt třídy StatusEffectInstance . U efektu můžeme
uvést následující základní parametry

typ efektu
seznam je ve třídě StatusEffects

délka trvání efektu

Tento řádek nastavuje, že hráč dostane effect rychlosti na 5 sekund se sílou efektu 1 a
dostane ho vždy (100% šance).

Efektů můžeme přidat i více. Například můžeme přidat, že je 10% šance (průměrně by se
tento efekt měl aplikovat 1 z 10 snězení itemu), že na 10 sekund dostane efekt nevolnosti se
sílou 1.

Na závěr musíme použít metodu build() , aby se komponent vytvořil.

uvádí se opět v jednotce tick - pro zjednodušení můžeme číslo
vynásobit 20 a dostaneme délku trvání v sekundách

síla efektu
číslo od 1 do 255

další parametr uvádíme, jaká je šance, že hráč tento efekt dostane
hodnota je desetinné číslo od 0 do 1 (1 je 100%)

public static final FoodComponent SPEED_FOOD_COMPONENT = new

FoodComponent.Builder()

.alwaysEdible()

.nutrition(1)

.saturationModifier(1f)

.snack()

.statusEffect(new StatusEffectInstance(StatusEffects.SPEED, 5 * 20, 1),

1f)

1

2

3

4

5

6

public static final FoodComponent SPEED_FOOD_COMPONENT = new

FoodComponent.Builder()

.alwaysEdible()

.nutrition(1)

.saturationModifier(1f)

.snack()

.statusEffect(new StatusEffectInstance(StatusEffects.SPEED, 5 *

20, 1), 1f)

.statusEffect(new StatusEffectInstance(StatusEffects.NAUSEA, 10 *

20, 1), 0.1f)

1

2

3

4

5

6

7

Tento komponent poté můžeme aplikovat na náš item tak, že po vytvoření nastavení
použijeme metodu food a jako parametr uvedeme náš vytvořený komponent.

Celý začátek naší třídy bude vypadat následujícím způsobem. Je zde ukázaný jen začátek
souboru a jsou zde zvýrazněné změněné řádky.

public static final FoodComponent SPEED_FOOD_COMPONENT = new

FoodComponent.Builder()

.alwaysEdible()

.nutrition(1)

.saturationModifier(1f)

.snack()

.statusEffect(new StatusEffectInstance(StatusEffects.SPEED, 5 *

20, 1), 1f)

.statusEffect(new StatusEffectInstance(StatusEffects.NAUSEA, 10 *

20, 1), 0.1f)

.build();

1

2

3

4

5

6

7

8

public static final Item MAGIC_DUST = register(

new Item(new

Item.Settings().maxCount(16).food(SPEED_FOOD_COMPONENT)),

"magic_dust"

);

1

2

3

4

public class ModItems {

public static final FoodComponent SPEED_FOOD_COMPONENT = new

FoodComponent.Builder()

.alwaysEdible()

.nutrition(1)

.saturationModifier(1f)

.snack()

.statusEffect(new

StatusEffectInstance(StatusEffects.SPEED, 5 * 20, 1), 1f)

.statusEffect(new

StatusEffectInstance(StatusEffects.NAUSEA, 10 * 20, 1), 0.1f)

.build();

public static final Item MAGIC_DUST = register(

new Item(new

Item.Settings().maxCount(16).food(SPEED_FOOD_COMPONENT)),

"magic_dust"

);

1

2

3

4

5

6

7

8

9

10

11

12

13

14

